Gradio Component
The automatic gradio UI is a great way to test your stream. However, you may want to customize the UI to your liking or simply build a standalone Gradio application.
The WebRTC Component
To build a standalone Gradio application, you can use the WebRTC
component and implement the stream
event.
Similarly to the Stream
object, you must set the mode
and modality
arguments and pass in a handler
.
Below are some common examples of how to use the WebRTC
component.
import gradio as gr
from gradio_webrtc import WebRTC, ReplyOnPause
def response(audio: tuple[int, np.ndarray]): # (1)
"""This function must yield audio frames"""
...
for numpy_array in generated_audio:
yield (sampling_rate, numpy_array, "mono") # (2)
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 style='text-align: center'>
Chat (Powered by WebRTC ⚡️)
</h1>
"""
)
with gr.Column():
with gr.Group():
audio = WebRTC(
mode="send-receive", # (3)
modality="audio",
)
audio.stream(fn=ReplyOnPause(response),
inputs=[audio], outputs=[audio], # (4)
time_limit=60) # (5)
demo.launch()
-
The python generator will receive the entire audio up until the user stopped. It will be a tuple of the form (sampling_rate, numpy array of audio). The array will have a shape of (1, num_samples). You can also pass in additional input components.
-
The generator must yield audio chunks as a tuple of (sampling_rate, numpy audio array). Each numpy audio array must have a shape of (1, num_samples).
-
The
mode
andmodality
arguments must be set to"send-receive"
and"audio"
. -
The
WebRTC
component must be the first input and output component. -
Set a
time_limit
to control how long a conversation will last. If theconcurrency_count
is 1 (default), only one conversation will be handled at a time.
import asyncio
import base64
import logging
import os
import gradio as gr
import numpy as np
from google import genai
from gradio_webrtc import (
AsyncStreamHandler,
WebRTC,
async_aggregate_bytes_to_16bit,
get_twilio_turn_credentials,
)
class GeminiHandler(AsyncStreamHandler):
def __init__(
self, expected_layout="mono", output_sample_rate=24000, output_frame_size=480
) -> None:
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=16000,
)
self.client: genai.Client | None = None
self.input_queue = asyncio.Queue()
self.output_queue = asyncio.Queue()
self.quit = asyncio.Event()
self.connected = asyncio.Event()
def copy(self) -> "GeminiHandler":
return GeminiHandler(
expected_layout=self.expected_layout,
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size,
)
async def stream(self):
while not self.quit.is_set():
audio = await self.input_queue.get()
yield audio
async def connect(self, api_key: str):
client = genai.Client(api_key=api_key, http_options={"api_version": "v1alpha"})
config = {"response_modalities": ["AUDIO"]}
async with client.aio.live.connect(
model="gemini-2.0-flash-exp", config=config
) as session:
self.connected.set()
async for audio in session.start_stream(
stream=self.stream(), mime_type="audio/pcm"
):
if audio.data:
yield audio.data
async def receive(self, frame: tuple[int, np.ndarray]) -> None:
_, array = frame
array = array.squeeze()
audio_message = base64.b64encode(array.tobytes()).decode("UTF-8")
self.input_queue.put_nowait(audio_message)
async def generator(self):
async for audio_response in async_aggregate_bytes_to_16bit(
self.connect(api_key=self.latest_args[1])
):
self.output_queue.put_nowait(audio_response)
async def emit(self):
if not self.args_set.is_set():
await self.wait_for_args()
if not self.connected.is_set():
asyncio.create_task(self.generator())
await self.connected.wait()
array = await self.output_queue.get()
return (self.output_sample_rate, array)
def shutdown(self) -> None:
self.quit.set()
with gr.Blocks() as demo:
gr.HTML(
"""
<div style='text-align: center'>
<h1>Gen AI SDK Voice Chat</h1>
<p>Speak with Gemini using real-time audio streaming</p>
<p>Get an API Key <a href="https://support.google.com/googleapi/answer/6158862?hl=en">here</a></p>
</div>
"""
)
with gr.Row() as api_key_row:
api_key = gr.Textbox(
label="API Key",
placeholder="Enter your API Key",
value=os.getenv("GOOGLE_API_KEY", ""),
type="password",
)
with gr.Row(visible=False) as row:
webrtc = WebRTC(
label="Audio",
modality="audio",
mode="send-receive",
rtc_configuration=get_twilio_turn_credentials(),
pulse_color="rgb(35, 157, 225)",
icon_button_color="rgb(35, 157, 225)",
icon="https://www.gstatic.com/lamda/images/gemini_favicon_f069958c85030456e93de685481c559f160ea06b.png",
)
webrtc.stream(
GeminiHandler(),
inputs=[webrtc, api_key],
outputs=[webrtc],
time_limit=90,
concurrency_limit=2,
)
api_key.submit(
lambda: (gr.update(visible=False), gr.update(visible=True)),
None,
[api_key_row, row],
)
import gradio as gr
from gradio_webrtc import WebRTC
from pydub import AudioSegment
def generation(num_steps):
for _ in range(num_steps):
segment = AudioSegment.from_file("audio_file.wav")
array = np.array(segment.get_array_of_samples()).reshape(1, -1)
yield (segment.frame_rate, array)
with gr.Blocks() as demo:
audio = WebRTC(label="Stream", mode="receive", # (1)
modality="audio")
num_steps = gr.Slider(label="Number of Steps", minimum=1,
maximum=10, step=1, value=5)
button = gr.Button("Generate")
audio.stream(
fn=generation, inputs=[num_steps], outputs=[audio],
trigger=button.click # (2)
)
- Set
mode="receive"
to only receive audio from the server. - The
stream
event must take atrigger
that corresponds to the gradio event that starts the stream. In this case, it's the button click.
import gradio as gr
from gradio_webrtc import WebRTC
def detection(image, conf_threshold=0.3): # (1)
... your detection code here ...
return modified_frame # (2)
with gr.Blocks() as demo:
image = WebRTC(label="Stream", mode="send-receive", modality="video") # (3)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.30,
)
image.stream(
fn=detection,
inputs=[image, conf_threshold], # (4)
outputs=[image], time_limit=10
)
if __name__ == "__main__":
demo.launch()
- The webcam frame will be represented as a numpy array of shape (height, width, RGB).
- The function must return a numpy array. It can take arbitrary values from other components.
- Set the
modality="video"
andmode="send-receive"
- The
inputs
parameter should be a list where the first element is the WebRTC component. The only output allowed is the WebRTC component.
import gradio as gr
from gradio_webrtc import WebRTC
import cv2
def generation():
url = "https://download.tsi.telecom-paristech.fr/gpac/dataset/dash/uhd/mux_sources/hevcds_720p30_2M.mp4"
cap = cv2.VideoCapture(url)
iterating = True
while iterating:
iterating, frame = cap.read()
yield frame # (1)
with gr.Blocks() as demo:
output_video = WebRTC(label="Video Stream", mode="receive", # (2)
modality="video")
button = gr.Button("Start", variant="primary")
output_video.stream(
fn=generation, inputs=None, outputs=[output_video],
trigger=button.click # (3)
)
demo.launch()
- The
stream
event'sfn
parameter is a generator function that yields the next frame from the video as a numpy array. - Set
mode="receive"
to only receive audio from the server. - The
trigger
parameter the gradio event that will trigger the stream. In this case, the button click event.
Tip
You can configure the time_limit
and concurrency_limit
parameters of the stream
event similar to the Stream
object.
Additional Outputs
In order to modify other components from within the WebRTC stream, you must yield an instance of AdditionalOutputs
and add an on_additional_outputs
event to the WebRTC
component.
This is common for displaying a multimodal text/audio conversation in a Chatbot UI.
from gradio_webrtc import AdditionalOutputs, WebRTC
def transcribe(audio: tuple[int, np.ndarray],
transformers_convo: list[dict],
gradio_convo: list[dict]):
response = model.generate(**inputs, max_length=256)
transformers_convo.append({"role": "assistant", "content": response})
gradio_convo.append({"role": "assistant", "content": response})
yield AdditionalOutputs(transformers_convo, gradio_convo) # (1)
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 style='text-align: center'>
Talk to Qwen2Audio (Powered by WebRTC ⚡️)
</h1>
"""
)
transformers_convo = gr.State(value=[])
with gr.Row():
with gr.Column():
audio = WebRTC(
label="Stream",
mode="send", # (2)
modality="audio",
)
with gr.Column():
transcript = gr.Chatbot(label="transcript", type="messages")
audio.stream(ReplyOnPause(transcribe),
inputs=[audio, transformers_convo, transcript],
outputs=[audio], time_limit=90)
audio.on_additional_outputs(lambda s,a: (s,a), # (3)
outputs=[transformers_convo, transcript],
queue=False, show_progress="hidden")
demo.launch()
- Pass your data to
AdditionalOutputs
and yield it. - In this case, no audio is being returned, so we set
mode="send"
. However, if we setmode="send-receive"
, we could also yield generated audio andAdditionalOutputs
. - The
on_additional_outputs
event does not takeinputs
. It's common practice to not run this event on the queue since it is just a quick UI update.
- Pass your data to
AdditionalOutputs
and yield it. - In this case, no audio is being returned, so we set
mode="send"
. However, if we setmode="send-receive"
, we could also yield generated audio andAdditionalOutputs
. - The
on_additional_outputs
event does not takeinputs
. It's common practice to not run this event on the queue since it is just a quick UI update.